Modelling Stochastic Volatility with Leverage and Jumps: a Simulated Maximum Likelihood Approach via Particle Filtering
نویسندگان
چکیده
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle filter. Methods are employed to ensure that the approximating likelihood is continuous as a function of the unknown parameters thus enabling the use of standard Newton-Raphson type maximization algorithms. Our approach is robust and efficient relative to alternative Markov Chain Monte Carlo schemes employed in such contexts. In addition it provides a feasible basis for undertaking the nontrivial task of model comparison. Furthermore, we introduce new volatility model, namely SV-GARCH which attempts to bridge the gap between GARCH and stochastic volatility specifications. In nesting the standard GARCH model as a special case, it has the attractive feature of inheriting the same unconditional properties of the standard GARCH model but being conditionally heavier-tailed; thus more robust to outliers. It is demonstrated how this model can be estimated using the described methodology. The technique is applied to daily returns data for S&P 500 stock price index for various spans. In assessing the relative performance of SV with leverage and jumps and nested specifications, we find strong evidence in favour of a including leverage effect and jumps when modelling stochastic volatility. Additionally, we find very encouraging results for SV-GARCH in terms of predictive ability which is comparable to the other models considered. JEL classification: C01, C11, C14, C15, C32, E32
منابع مشابه
Modeling Stochastic Volatility with Leverage and Jumps: A ‘Smooth’ Particle Filtering Approach
In this paper we provide a unified methodology in order to conduct likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle...
متن کاملLeverage, heavy-tails and correlated jumps in stochastic volatility models
This paper proposes the efficient and fast Markov chain Monte Carlo estimation methods for the stochastic volatility model with leverage effects, heavy-tailed errors and jump components, and for the stochastic volatility model with correlated jumps. We illustrate our method using simulated data and analyze daily stock returns data on S&P500 index and TOPIX. Model comparisons are conducted based...
متن کاملSequential Monte Carlo Methods for Stochastic Volatility Models with Jumps
In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effect, non constant conditional mean and jumps. Our idea relies on the auxiliary particle filter algorithm together with the Markov Chain Monte Carlo (MCMC) methodology. Our method allows to sequentially evaluate the parameters and the latent processes involved in the dynamic of ...
متن کاملVolatility, Jumps and Predictability of Returns: a Sequential Analysis
In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effects and non constant conditional mean and jumps. We are interested in estimating the time invariant parameters and the non-observable dynamics involved in the model. Our idea relies on the auxiliary particle filter algorithm mixed together with Markov Chain Monte Carlo (MCMC) ...
متن کاملEstimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters
Time-varying volatility is common in macroeconomic data and has been incorporated into macroeconomic models in recent work. Dynamic panel data models have become increasingly popular in macroeconomics to study common relationships across countries or regions. This paper estimates dynamic panel data models with stochastic volatility by maximizing an approximate likelihood obtained via Rao-Blackw...
متن کامل